Search results for "Saccharomyces cerevisiae Proteins"

showing 10 items of 231 documents

Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomyco…

2017

Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression lev…

0106 biological sciences0301 basic medicineSaccharomyces cerevisiae ProteinsGene duplicationDuplicabilityPlant Biology & BotanySaccharomyces cerevisiaeSaccharomyces cerevisiae01 natural sciencesDivergenceEvolution Molecular03 medical and health sciencesGenes DuplicateGene Expression Regulation FungalGene expressionGene duplicationGeneticsSelection GeneticSaccharomycotinaPromoter Regions GeneticMolecular BiologyGenePhylogenybiologyPhylogenetic treeGenetic VariationPromoterGeneral MedicineFull Papersbiology.organism_classification030104 developmental biologyEvolutionary biologyTranscriptional plasticityGene expressionGenome Fungal010606 plant biology & botany
researchProduct

AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7

2005

AbstractIn plant chloroplasts two superoxide dismutase (SOD) activities occur, FeSOD and Cu/ZnSOD, with reciprocal regulation in response to copper availability. This system presents a unique model to study the regulation of metal-cofactor delivery to an organelle. The Arabidopsis thaliana gene AtCCS encodes a functional homolog to yeast Ccs1p/Lys7p, a copper chaperone for SOD. The AtCCS protein was localized to chloroplasts where it may supply copper to the stromal Cu/ZnSOD. AtCCS mRNA expression levels are upregulated in response to Cu-feeding and senescence. We propose that AtCCS expression is regulated to allow the most optimal use of Cu for photosynthesis.

0106 biological sciencesCu/Zn superoxide dismutaseChloroplastsSaccharomyces cerevisiae ProteinsMolecular Sequence DataArabidopsisBiophysicsSaccharomyces cerevisiaeMetallo chaperoneChloroplastModels Biological01 natural sciencesBiochemistryGreen fluorescent proteinSuperoxide dismutase03 medical and health sciencesDownregulation and upregulationGene Expression Regulation PlantStructural BiologyOrganelleGeneticsAmino Acid SequenceRNA MessengerMolecular BiologyGene030304 developmental biology0303 health sciencesbiologyArabidopsis ProteinsGene Expression ProfilingGenetic Complementation TestCell BiologyYeastChloroplastProtein TransportBiochemistryChaperone (protein)Mutationbiology.proteinSequence AlignmentCopperMolecular Chaperones010606 plant biology & botanyFEBS Letters
researchProduct

NMR Investigation of Structures of G-Protein Coupled Receptor Folding Intermediates

2016

Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031-4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significant…

0301 basic medicine10120 Department of ChemistryBioquímicaSaccharomyces cerevisiae Proteins1303 BiochemistryProtein ConformationStereochemistrySaccharomyces cerevisiaeBiochemistryMicelleRessonància magnètica nuclear1307 Cell BiologyG03 medical and health sciencesprotein coupled receptorGPCRProtein Domains540 Chemistry1312 Molecular BiologyAmino Acid SequenceNuclear Magnetic Resonance BiomolecularMolecular BiologyMicellesG protein-coupled receptorSequence Homology Amino Acid030102 biochemistry & molecular biologyChemistryProteïnes de membranaFoldingCell BiologyTransloconPeptide FragmentsTransmembrane proteinNMRFolding (chemistry)Crystallography030104 developmental biologyStructural biology10036 Medical ClinicProtein Structure and FoldingReceptors Mating FactorHelixProtein folding
researchProduct

Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency

2018

In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are es…

0301 basic medicineCancer ResearchRNA StabilityAdaptation BiologicalGene ExpressionBiochemistryGene Expression Regulation FungalGene expressionMedicine and Health SciencesExpressió genèticaGenetics (clinical)Regulation of gene expressionZinc fingerbiologyMessenger RNANutritional DeficienciesEukaryotaTranslation (biology)Iron DeficienciesCell biologyNucleic acidsDNA-Binding ProteinsCellular Structures and OrganellesResearch ArticleSaccharomyces cerevisiae Proteinslcsh:QH426-470IronProtein subunitSaccharomyces cerevisiaeSaccharomyces cerevisiaeDNA constructionRegulatory Sequences Ribonucleic Acid03 medical and health sciencesExtraction techniquesTristetraprolinPolysomeGeneticsRNA MessengerMolecular BiologyEcology Evolution Behavior and SystematicsNutritionAU Rich ElementsAU-rich elementBiology and life sciencesOrganismsFungiCell Biologybiology.organism_classificationYeastRNA extractionResearch and analysis methodslcsh:GeneticsMolecular biology techniques030104 developmental biologyPolyribosomesPlasmid ConstructionIron DeficiencyRNAProtein TranslationRibosomesTranscription Factors
researchProduct

Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes

2019

Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylati…

0301 basic medicineCancer ResearchSaccharomyces cerevisiae Proteinschip-on-chipSaccharomyces cerevisiaeEpigenesis GeneticHistones03 medical and health sciencesHistone H30302 clinical medicineOsmotic PressureGene Expression Regulation FungalGene expressionEpigeneticsHistone H3 acetylationMolecular BiologyHistone AcetyltransferasesRegulation of gene expressionMediator ComplexbiologyepigeneticsAcetylationCell biologyChromatinDNA-Binding ProteinsHistone Code030104 developmental biologyHistoneHistone acetylationAcetylation030220 oncology & carcinogenesisbiology.proteinchromatinhog1osmotic stressMitogen-Activated Protein Kinasesgene regulationProtein Processing Post-TranslationalTranscription FactorsResearch Paper
researchProduct

Defining Human Tyrosine Kinase Phosphorylation Networks Using Yeast as an In Vivo Model Substrate.

2017

Systematic assessment of tyrosine kinase-substrate relationships is fundamental to a better understanding of cellular signaling and its profound alterations in human diseases such as cancer. In human cells, such assessments are confounded by complex signaling networks, feedback loops, conditional activity, and intra-kinase redundancy. Here we address this challenge by exploiting the yeast proteome as an in vivo model substrate. We individually expressed 16 human non-receptor tyrosine kinases (NRTKs) in Saccharomyces cerevisiae and identified 3,279 kinase-substrate relationships involving 1,351 yeast phosphotyrosine (pY) sites. Based on the yeast data without prior information, we generated …

0301 basic medicineCell signalingHistologySaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeAmino Acid MotifsSaccharomyces cerevisiaeInteractomeReceptor tyrosine kinaseArticlePathology and Forensic Medicine03 medical and health scienceschemistry.chemical_compoundHumansProtein Interaction MapsPhosphorylationbiologyTyrosine phosphorylationCell BiologyProtein-Tyrosine Kinasesbiology.organism_classificationYeastCell biology030104 developmental biologychemistrybiology.proteinPhosphorylationTyrosine kinaseSequence AlignmentCell systems
researchProduct

A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export.

2018

17 páginas, 12 figuras.

0301 basic medicineChromatin ImmunoprecipitationSaccharomyces cerevisiae ProteinsTranscription GeneticSaccharomyces cerevisiaeBiologyyeastEpigenetic RepressionBiochemistryRNA TransportHistones03 medical and health sciencesHistone H30302 clinical medicineTranscription (biology)Gene Expression Regulation FungalGeneticsHistone H2BMonoubiquitinationEpigeneticsRNA MessengerMolecular BiologyGenemRNA exportepigeneticsUbiquitinationMethylationArticlesTATA-Box Binding ProteinYeastCell biology030104 developmental biologyran GTP-Binding ProteinH3K4me3EpigeneticsRNA Polymerase IItranscriptionTranscription030217 neurology & neurosurgeryH2B ubiquitinationEMBO reports
researchProduct

The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins

2019

The highly conserved 5’–3’ exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the trans…

0301 basic medicineExonucleaseCell biologySaccharomyces cerevisiae ProteinsTranscription GeneticMolecular biologyScienceRNA StabilityGenetic VectorsGeneral Physics and AstronomyGene Expression02 engineering and technologySaccharomyces cerevisiaeEndoplasmic ReticulumGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesEukaryotic translationTranscription (biology)Gene Expression Regulation FungalGene expression540 ChemistryProtein biosynthesisRNA MessengerCloning Molecularlcsh:ScienceRegulation of gene expressionMultidisciplinarybiologyChemistryGene Expression ProfilingQMembrane ProteinsTranslation (biology)General Chemistry021001 nanoscience & nanotechnologyRibosomeRecombinant Proteins3. Good healthCell biology030104 developmental biologyMembrane proteinProtein BiosynthesisExoribonucleasesbiology.protein570 Life sciences; biologylcsh:Q0210 nano-technologySignal Transduction
researchProduct

Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular proces…

2018

This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence f…

0301 basic medicineGlycosylationSaccharomyces cerevisiae ProteinsRNA-binding proteinSaccharomyces cerevisiaeBiologyEndoplasmic ReticulumMannosyltransferases03 medical and health scienceschemistry.chemical_compoundCongenital Disorders of GlycosylationNeoplasmsNuclear Receptor Subfamily 4 Group A Member 2GeneticsAnimalsDrosophila ProteinsHumansMolecular BiologyTranscription factorOSBPGeneGenetics (clinical)Cellular compartmentEndoplasmic reticulumMembrane ProteinsRNA-Binding ProteinsGeneral MedicineLRP1Cell biology030104 developmental biologychemistryNerve DegenerationDrosophilaCarrier ProteinsHuman molecular genetics
researchProduct

Sequential cleavage of the proteins encoded by HNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, results in products acting…

2017

This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that t…

0301 basic medicineMannosyltransferaseGlycosylationSaccharomyces cerevisiae ProteinsGlycosylationProtein ConformationRNA SplicingSaccharomyces cerevisiaeBiologyMannosyltransferases03 medical and health scienceschemistry.chemical_compoundExonNuclear Receptor Subfamily 4 Group A Member 2GeneticsAnimalsHumansAmino Acid SequenceAsparagineMolecular BiologyGeneGenetics (clinical)Cellular compartmentPoint mutationComputational BiologyMembrane ProteinsExonsGeneral MedicineCell biologyAlternative Splicing030104 developmental biologychemistryCodon NonsenseDrosophilaCytokinesisHuman Molecular Genetics
researchProduct